
Journal of Sound and <ibration (2000) 236(4), 575}594
doi:10.1006/jsvi.2000.2994, available online at http://www.idealibrary.com on
THE TRANSFER MATRIX FOR A DISSIPATIVE SILENCER
OF ARBITRARY CROSS-SECTION

R. GLAV

¹he Marcus=allenberg ¸aboratory for Sound and <ibration Research, Department of Vehicle
Engineering, Royal Institute of Technology, S-10044 Stockholm, Sweden

(Received 21 September 1999, and in ,nal form 31 January 2000)

In this work, the acoustic transfer matrix for a cylindrical dissipative silencer of arbitrary
cross-section and bulk-reacting lining is derived for the case of negligible mean #ow. The
derivation is performed in a two-step procedure. First, the corresponding in"nite-lined duct
is analyzed by separating the longitudinal dependence and using collocation for the entailing
eigenvalue problem. Then, using the resulting eigenmodes, the acoustic "eld in the silencer is
expanded and adjusted to the boundary conditions at the in/outlet by mode-matching. To
illustrate the applicability and numerical e$ciency of the proposed technique a practical
example is given.

( 2000 Academic Press
1. INTRODUCTION

One of the most common types of silencer in practical #ow duct acoustics is the cylindrical
dissipative silencer. This combines large mid- and high-frequency attenuation with low
back pressure and it is also, with its typically quite non-reactive acoustical behaviour,
comparably easy to combine with other silencers in, e.g., an automative exhaust system or
a ventilation duct. The major drawbacks are the poor low-frequency attenuation and the
erosion and clogging of the porous material packed within the silencer. It is also di$cult to
model accurately and e$cient optimization is thus not an easy task. The modelling
di$culties are due to a number of reasons, one being the description of the porous material,
another being the analysis of the acoustic "eld in the silencer. For higher Mach numbers,
#ow-acoustic e!ects may also impede the modelling.

The attempts to model the cylindrical dissipative silencer may be classi"ed by whether the
lining is assumed to be locally-or bulk-reacting. The former case has been treated frequently,
in the literature, where the work by Morse [1] in 1939 may serve as a foundation. The
bulk-reacting case has not been discussed to the same extent even though an analysis of the
sound "eld inside both a two-dimensional (2-D) rectangular lined duct as well as a circular
lined duct (omitting any angular variation) was presented by Scott [2] as early as 1946. This
analysis is however, like most more recent contributions regarding dissipative silencers with
bulk-reacting lining, concerned only with the in"nite case, i.e., all inlet and outlet e!ects
associated with an actual, "nite silencer are omitted. If the lining is acoustically dense, the
results may, as will be illustrated below, still be useful in practice but as many applications
require a lighter absorbent to obtain the desired attentuation, a more complete analysis is
needed. Such an analysis, using Wiener}Hopf technique, was "rst presented by Nilsson and
Brander [3] in 1980, concerning a silencer with a superimposed mean #ow in the central
passage. In 1988, Cummings and Chang [4], by use of straightforward mode-matching
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technique, analyzed a similar device including mean #ow e!ects also within the lining.
Based on this work, a transfer matrix formulation for the bulk-reacting dissipative silencer
was developed by Peat [5]. Both these latter contributions, as well as the earlier papers by
Nilsson and Brander, are restricted to the case of circular cross-section. In a practical
application where the outer shape is in many cases decisive for the choice of design, this
apparently reduces the applicability of these models. Moreover, as the geometry is also
assumed to be axisymmetric, i.e., concentric inlet/outlet, only radially dependent modes are
included in the analysis. A completely arbitrary geometry, neglecting mean #ow, has been
addressed by Tarnow and Pommer [6] using a Green's function technique. They did not
however present any complete technique to obtain the appropriate Green's function in the
more general case. Quite recently, Peat and Rathi [7] have presented what seems to be the
most complete modelling of a dissipative silencer so far, including both mean #ow and
complex geometry as well as anisotropy of the liner. However, as it is a full 3-D FEM
approach, the numerical e!ort may be considerable and limits the usefulness in an iterative
design process.

The purpose of this work is to extend the modelling capabilities concerning cylindrical
dissipative silencers by deriving the plane wave transfer matrix, i.e., the most common
formulation in the acoustic 2-port method, for a silencer with arbitrary cross-section and
inlet/outlet location. To simplify the analysis, and also because a number of important
applications typically have Mach numbers less than 0)1, (for instance, the automotive
exhaust system), mean #ow is neglected. The governing equations and boundary/coupling
conditions for this problem are formulated below in section 2 whereas the actual derivation
is given in section 3. To obtain a numerically e$cient formulation, the cylindrical feature of
the problem is utilised, and thus the derivation may be performed in a two-step procedure.
First, the eigenmodes of the corresponding in"nite-lined duct are determined using
the technique of collocation and, second, mode matching is employed to include the
longitudinal boundary and coupling conditions. Schematically, there are some similarities
with the technique of Cummings and Chang [4] although 3-D waves are now included both
in the lined duct as well as in the inlet/outlet. In section 4, the various numerical solvers used
in the computer coding are summarized and some numerical results from the analysis of
a realistic automotive silencer are presented. Finally, in section 5, the work is summarized
and some conclusions are drawn.

2. FORMULATION OF THE PROBLEM

A cylindrical dissipative silencer is suitably divided into four regions; inlet, outlet, central
passage and lining (Figure 1). The "rst three convey the gases, e.g., air or IC-engine exhaust
gases, whereas the lining is included only for the sake of noise control. The geometry is most
conveniently represented in a cylindrical co-ordinate system with the z-axis directed along
the main axis, thus enabling the cross-sectional dimensions to be given by the parametric
curves C

1
:r"a(u) and C

2
:r"b(u). As seen from Figure 1, the cross-section of the central

passage, S
1
, is assumed to "t precisely the cross-sections of the inlet and outlet regions.

From a modelling point of view this is not decisive although simplifying, but is instead
imposed by the fact that most dissipative silencers are manufactured from a perforated tube
wrapped by porous materials, thus having the appearance illustrated. In an application of
considerable mean #ow, such a design also helps to reduce the static pressure drop. In
addition to guiding the mean #ow, the perforated shielding will also protect the porous
material from erosion. As the open area of the perforations is typically well above 20%, the
acoustic e!ects however, are usually very small and will thus be neglected below.



Figure 1. The geometry of a cylindrical dissipative silencer.
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Consider a stationary problem, the time-factor exp(!iut) is omitted below, and assume
the medium in each region to be homogenous, quiescent and isotropic. By also assuming
linear acoustics, the Helmholtz equation is valid for the acoustic velocity potential, de"ned
from v"!+W, in each region,
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the wavenumber. In those regions that convey the gases, the medium is
assumed to be non-dissipative and the density and sound velocity, denoted o

1
and

c
1
respectively, thus have real values in the frequency domain. Inside the lining on the other

hand, the bulk-reacting mixture of porous material and gases is, by de"nition, dissipative
and o

2
and c

2
have complex values with, as long as the resulting solutions are causal, an

optional frequency dependence.
By regarding all envelope surfaces as rigid, the boundary conditions for the di!erent

regions are
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where the last condition is obtained from the rigid endplates of the silencer. The normal
vector n is de"ned in Figure 1. As can be seen the central passage is not directly involved in
any of these conditions but is instead a!ected by the requirements for continuity in acoustic
pressure and normal velocity across the boundaries between the di!erent regions. Thus, the
following coupling conditions are valid for the gas conveying regions;

W
1
(r, u, 0)"W

3
(r, u, 0), (r, u)3S

1
, (10)

W
1
(r, u, l)"W

4
(r, u, l), (r, u)3S

1
, (11)

LW
1

Lz K
z/0

"

LW
3

Lz K
z/0

, (r, u)3S
1
, (12)

LW
1

Lz K
z/l

"

LW
4

Lz K
z/l

, (r, u)3S
1
, (13)

and the lining,
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Finally, all involved "elds and their derviatives must be periodic concerning the polar angle,
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It should also be observed that in this problem there are geometrical singularities at r"a,
z"0 and r"a, z"l. To handle these, a so-called &&edge condition'' [8] may be imposed.
This requires the acoustical energy contained within a vanishing volume enclosing the
singularity to be "nite and it will also warrant an unique solution of the "eld.

As this work is concerned with the transfer matrix description of the dissipative silencer,
only plane waves are allowed to propagate in the inlet and outlet regions and, as
a consequence, the maximum cross-sectional dimension of these regions is, for a given
frequency, restricted. Furthermore, as the main objective, underlying not only the transfer
matrix method but all building block techniques, is to obtain a description of each
subsystem that is independent of the rest of the system, no evanescent higher order modes
may be incident upon the dissipative section and thus the inlet and outlet ducts are assumed
to be &&long enough''.

3. DERIVATION OF THE TRANSFER MATRIX

The most straightforward method of solving the problem formulated above, especially
considering the cylindrical geometry, is probably to use the technique of mode-matching [8].
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By this method, the problem is, partly as a consequence of its transmission line feature, most
suitably separated into three parts along the z-axis; inlet, outlet and lined duct, the last part
being a combination of the central passage and the lining. Each of these parts is then
analyzed separately for a case with no z-dependent boundary conditions, i.e., being
considered as an in"nite duct. This approach will yield the eigenmodes of the di!erent parts
and provided these functions constitute a complete set on the corresponding cross-section,
all possible "elds within each part of the silencer can be represented by combinations of
them. The description of the total "eld is then obtained by matching these partial "elds
using the longitudinal coupling and boundary conditions.

3.1. THE EIGENMODES

Once the z dependence has been separated by spatial Fourier transformation;
t(k

z
)": =̀

~=
W (z) exp(!ik

z
z) dz the derivation of the eigenmodes consists of solving two

2-D eigenvalue problems, one for the inlet/outlet and one for the lined duct. By restricting
the analysis to applications where the inner cross-section S

1
is circular, separation of

variables may be pursued to solve the inlet/outlet problem yielding the well-known modal
amplitudes of a cylindrical circular rigid duct,
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where the order of the Bessel and the trigonometric functions, n, are integer functions of the
eigenmode numbering, q. The modes are numbered according to their cut-on frequency
denoting the fundamental no. 1. For the degenerate cases, i.e., for n'0, the cosine angular
dependence precedes the sine dependence. The same convention will be used also for the
dissipative duct, although referring to the cut-on-frequencies of the corresponding lossless
case. The radial wavenumbers k(q)

r
, which may readily be found in any mathematical

handbook [9], are related to the longitudinal wavenumber k(q)
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The lined duct, on the other hand, generally has a cross-sectional shape which does not
lend itself to further separation and instead some more general technique is required.
Considering the usually regular cross-sectional shape of the commerical dissipative silencer
a natural choice is the simplest possible; collocation. This technique has been applied to
lined ducts by the author in an earlier work [10] and will therefore only be outlined here for
reference purposes. The basic idea is to assume that the modal amplitudes in the lined duct
can be approximated by a "nite expansion in the polar eigenfunctions. This ansatz is then
matched pointwise to the boundary conditions. Thus for the central passage,
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where s in accordance with equation (17) denotes the eigenmode number and J
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the Bessel
function of order m. The Neumann function, denoted N
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below, has been excluded from the
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expansion due to its singularity at r"0. A similar ansatz may also be formulated for the
modal amplitude in the lining,
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As each term in these two expansions is an exact solution to the governing equations in the
eigenvalue problem of the lined duct, the transverse wavenumbers,
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as well as the coe$cients A(s)
m
!F(s)

m
are to be determined solely from the boundary

conditions (6) and (14), (15). It should be noted that the "nite expansions above are of equal
length, M. This is a direct consequence of the uniqueness of the Fourier series and the
restriction to a circular inner region. By this, the continuity requirements on pressure and
normal velocity may be termwise ful"lled and embedded in the formulation. Collocation is
accordingly performed using only the rigid-wall boundary condition at C

2
, giving the

following system of linear equations for the coe$cients in the modal amplitude expansion in
the central passage:

M
+

m/0

A(s)
m

Mk(s)
M2

(K(s)
1,m

J@
m
(k(s)

M2
b
j
)#K(s)

2,m
N@

m
(k(s)

M2
b
j
)) cosmu

j

#

mb@
j

b2
j

(K(s)
1,m

J
m
(k(s)

M2
b
j
)#K(s)

2,m
N

m
(k(s)

M2
b
j
)) sinmu

j
N

#

M
+
n/0

B(s)
m

Mk(s)
M2

(K(s)
1,m

J@
m
(k(s)

M2
b
j
)#K(s)

2,m
N@

m
(k(s)

M2
b
j
)) sin mu

j
(22)

!

mb@
j

b2
j

(K(s)
1,m

J
m
(k(s)

M2
b
j
)#K(s)

2,m
N

m
(k(s)

M2
b
j
)) cosmu

j
N"0, j"1, 2,2, 2M#1,

where prime denotes derivation, b
j
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j
) are the points selected for the collocation and,

using a well-known relation for Bessel functions [9],
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The above equations may be written in matrix form,

S ) (A(s)
0

, A(s)
1

, B(s)
1

,2, A(s)
M

, B(s)
M

)T"0, (25)



TRANSFER MATRIX FOR A DISSIPATIVE SILENCER 581
where S apparently has the dimension (2M#1)](2M#1) and for the sake of non-trivial
solutions, a determinant equal to zero,

detS (k(s)
M1

)"0. (26)

From equation (26), which together with equation (21) constitutes the dispersion relation
for the lined duct, it is seen that the transversal wavenumber of the central passage, k(s)

M1
, has

been chosen as independent variable. This choice is motivated by the assumption that this
wavenumber varies the least with frequency and it will consquently facilitate the numerical
handling. Once equation (26) is solved the modal amplitude coe$cients in the central
passage may be calculated from equation (25) and from these, the coe$cients for the lining
can be evaluated directly,
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Clearly, the eigenmodes of the lined duct are now fully determined but before proceeding to
handling the actual "nite dissipative silencer some comments may be made upon the
collocation technique. Obviously, the simplicity of the collocation technique is very
tractable and both derivation and numerical implementation is most straightforward. The
major drawback is the dependence of the rate of convergence on the choice of points in the
collocation. In contrast to any technique based upon a weak formulation which averages
the characteristics of a given problem, collocation performs a discrete sampling and input
data is thus geometrically low-pass "ltered. In this application, where collocation is
performed using a homogeneous condition along a regular and by the trial functions
well-captured boundary, the rate of convergence and accuracy will in most cases be
reasonable if the angle between consequent collocation points is simply kept constant.
However, to improve the results and also avoid possible occurrences of Runge's phenomena
for large values of M, an adaptive scheme for the collocation points [10] is utilized here.

3.2. THE MODE MATCHING

Once the eigenmodes and corresponding wavenumbers are known, the actual "nite
dissipative silencer with inlet and outlet can be analyzed using the technique of mode
matching. Initially, the velocity potential in the di!erent regions is formulated as a sum of
the corresponding eigenmodes,
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where /(q)(r, u) is normalized to give /(1)"1. The eigenmodes of the homogenous and
non-dissipative inlet/outlet can be shown to form a complete set and it is also possible, and
quite straightforward, to formulate an orthogonality relation [11],
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0
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which subsequently will prove useful. For the non-homogenous dissipative duct, the
situation is somewhat more complicated. For this part, the eigenvalue problem is not
real-valued and there is, to the author's knowledge, no proof available in the literature as to
whether a set of eigenmodes is complete or not in the case of complex eigenvalues. One may,
however, argue that if the set is complete in the corresponding real case, it is, by analytical
continuation, also complete in the complex case. Even though a true orthogonality relation
does not exist it is still possible to formulate a similar and equally useful relation also for the
eigenmodes of the dissipative duct (see, for instance, reference [12]),
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By utilization of the longitudinal boundary and coupling conditions, the following relations
involving the unknown coe$cients a(1)
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respectively. It is possible to obtain the coe$cients from these relations directly by yet again
employing collocation as suggested by Munjal [13]. Here, however, as the inlet and outlet
boundaries of the lined duct are quite irregular, more accurate results are obtained if the
polar dependence of the eigenmodes is eliminated by integration over the corresponding
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cross-section, thus replacing the requirements on pointwise ful"lment of the boundary and
coupling conditions by equality in mean. To obtain a well-de"ned system of equations, eqs
(34)}(39) must, preceding the integration, be multiplied by a number of linearly indepedent
weighting functions. In this procedure it may be suitable to identify these functions as the
given eigenmodes and thus utilize the relations (32) and (33). This technique to produce
a weak formulation of the problem is traditionally termed mode-matching. Thus, by
multiplication of the pressure relations (34) and (37) with /(u), u"1,2,Q, and then
integration over S
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, equation (34) gives
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Similarly, the &&orthogonality relation'' for the dissipative duct (33) can be utilized by "rst
multiplying the velocity continuity condition (35) with o
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and integrating over S
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Eventually, in the case of negligible dissipation and solely plane waves these relations are
reduced to the classical requirement on continuity in acoustic volume #ow across the area
change. The same procedure can also be performed at z"l for conditions (38) and (39)
giving
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Equations (40)}(45) constitute a system of 2Q#2S linear equations for, as the incident
plane wave is known either at the inlet or at the outlet, an equal number of unknowns.
Usually, it is numerically suitable to try to derive closed-form expressions for some of the
unknowns and thus enable compression of the system before solving it. This can be done in
a number of ways and in most cases the best formulation is decided upon by the size and the
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range of the di!erent parameters, e.g. frequency or attenuation. One alternative is to solve
the expansion coe$cients for the dissipative duct from equations (44) and (45),

b(v)
`
"

o
1

k(v)zWK(v)W [1!exp(2ik(v)zWl)] Gk(1)z/ PS
1

t(v)
1

dS[a(1)
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~
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`
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~
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(46)
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1
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`
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~
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~
]

(47)

!

Q
+
q/2

k(q)z/ PS
1

/(q)t(v)
1

dS[a(q)
~

exp(ik(v)zWl)#c(q)
`

]H, v"1,2,S.

By inserting these expressions into the system given by equations (40)}(43) and de"ning the
state variables usually associated with the acoustic transfer matrix, i.e., plane wave pressure
and volume velocity at the inlet and outlet sections,

p
1
"!iuo

1
(a(1)

`
#a(1)

~
), (48)

;
1
"!ik(1)z/ S

1
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~
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p
2
"!iuo

1
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;
2
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1
(c(1)

`
!c(1)

~
), (51)

among which the variables on the outlet/downstream side are assumed to be known,
a system of linear equations for 2Q unknowns; p

1
, ;

1
along with a(2) ,2, a(Q) and

c(2)
1

,2, c(Q)
1

is obtained:
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2
, (53)

c
1
K(p,1)

b
;

1
#iuS

1

Q
+
q/2

[(K(p,q)
b

#K(p)/ d
pq

)a(q)
~
#K(p,q)

a
c(q)
`

]"c
1
K(p,1)

a
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2
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(54)
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2
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where d
pq

is the Kronecker delta and

K(p,q)
a

K(p,q)
b
H"

S
+
s/1

ikpz/o1
k(s)zWK(s)W sin(k(s)zWl ) PS

1

/(p)t (s)
1

dS PS
1

/(q)t(s)
1

dSG
1

cos(k(s)zWl )
. (56)

In matrix form, this system reads

Ax"b, (57)

where A apparently has the dimension 2Q]2Q and the elements given by equations
(52)}(55). The unknowns are arranged as

xT"(p
1
,;

1
, a (2)

~
, c(2)

`
,2, a(Q)

~
, c(Q)

`
), (58)

whereas the right-hand side reads
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1
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a
;

2
, S2

1
p
2
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1
c
1
K(1,1)

b
;

2
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1
K(2,1)

a
;

2
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1
K(2,1)

b
;

2
,

(59)

2, c
1
K(Q,1)

a
;

2
, c

1
K(Q,1)

b
;

2
).

It may be noted that for a silencer with very poor dissipation, the longitudinal wavenumber
of the dissipative duct, k(s)zW, might become almost real and thus whenever there is
a longitudinal resonance in the silencer, the constants speci"ed in equation (56) tends
towards in"nity and thus A becomes numerically ill-conditioned. This is in most cases
somewhat academic as the typical dissipative silencer has quite a large rate of dissipation.
However, if the formulation is required to handle the reactive case as well, it might be
suitable, by use of equations (41) and (43) to eliminate the inlet and outlet expansion
coe$cients and obtain instead a (2S#2)](2S#2) matrix to solve for the dissipative "eld
and the inlet plane wave. As the number of modes required in each part to obtain a certain
accuracy is related to the dimensions of the cross-section and thus S'Q, this latter system
is numerically larger even though, for some symmetrical cases, the matrix is sparse.

It might in this context be appropriate to mention brie#y the matter of relative
convergence associated with the mode-matching technique. As the partial "eld expansions
(28)}(31) are truncated in the above derivation and the system (57) is well-de"ned no matter
how this is performed &&in detail'', the question arises as to whether the relation between the
number of modes included in each region is optional or not. For lower and moderate
number of modes, di!erent ratios S/Q would be expected to give di!erent solutions. On the
other hand, when the number of modes in the di!erent regions tends towards in"nity, one
might expect the result to be independent of this ratio. As shown by Mittra [14] when
analyzing the similar problem of mode matching in a 2-D bifurcated duct, this is however
not always the case and accordingly false solutions may be obtained. By use of the edge
condition, Mittra was able to derive a simple and very useful relationship between the mode
ratio and the cross-sectional dimensions that warrants an unique solution and thus prevents
relative convergence in the case of the bifurcated duct. Even though the sudden expansion/
contraction encountered in this problem also possesses a geometrical singularity with an
appending edge condition and thus perhaps would be expected to need a similar
relationship, there are some numerical investigations [15, 16], performed for the
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corresponding 2-D problem, that indicates this not to be the case. Nevertheless, there may
still be an optimum mode ratio which will give the fastest numerical convergence. In the 2-D
axisymmetric circular-circular case, this reads S/Q+b/a which eventually, as discussed by
Leroy [17], is also the choice that may be concluded from the work of Mittra. In addition,
this choice has also been put forward by Hudde et al. [18] by reasoning in terms of the
modal amplitudes in the di!erent regions. In the 3-D case, it seems, as suggested by Vassallo
[15], reasonable to assume the relation to be S/Q+S

2
/S

1
, i.e., proportional to the ratio of

the modal densities at each side of the expansion/contraction.
Finally, to obtain the transfer matrix elements, t

11
,2, t

22
, de"ned from

C
p
1
;

1
D"C

t
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t
12

t
21

t
22
DC

p
2
;

2
D , (60)

the &&two-load technique'' proposed by As bom [19] is well suited. By this approach the
silencer is "rst analyzed with the outlet &&closed'', ;

2
"0. By also specifying p

2
"1, this

corresponds to a right-hand side of equation (57) as bT"(0, S2
1
, 0,2, 0) and gives the upper

row of the transfer matrix as the "rst two components of x, i.e., t
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1
D
-0!$1

and
t
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"x
2
D
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. The outlet is then shifted to &&pressure release'', p
2
"0 which with ;

2
"1 in

turn corresponds to a right-hand side as
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and in the same way gives the two remaining parameters, t
12
"x

1
D
-0!$2

and t
22
"x

2
D
-0!$2

.
The transfer matrix for the dissipative silencer may consequently be written as

C
p
1
;

1
D"C

x
1
D
-0!$1

x
2
D
-0!$1

x
1
D
-0!$2

x
2
D
-0!$2

D C
p
2
;

2
D. (62)

4. NUMERICAL RESULTS

The formulation given above has been implemented on a PC-Pentium, 100 MHz using
Standard FORTRAN with double precision running under MS-DOS. This somewhat
unsophisticated choice of computational environment is motivated by the most important
question of engineering applicability set upon most numerical simulation codes. It also
means that all numerical simulations are handled within a primary memory capacity of
640 kb. It should be noted at this point that all results presented below are achieved within
a typical CPU-time of a couple of minutes.

To ensure that the dispersion relation (26) is correctly solved and that no eigenvalues are
lost or mixed, a dedicated scheme has been developed. First, for a given frequency, the
amount of dissipation is reduced to a minimum to gather the transverse wavenumbers
along the real axis in the complex k

M1
plane. To isolate and locate the roots approximately,

the principle of arguments is then applied [20]. This will also reveal any possible degeneracy
of the eigenvalues. The approximate locations of the eigenvalues are then used to initiate
a secant search to the desired accuracy. Once a root has been accurately determined, the
rate of dissipation is stepwise increased to its actual value and the root being traced
throughout this process, again using the secant method. In this material stepping the initial
values for the current material point are linearly extrapolated from the results of the two
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preceding points. This technique is clearly not applicable until the "rst two points have been
analyzed and therefore the second point in some cases is just a slight perturbation of the
starting point. To increase the speed of the material stepping in a such an application,
a gradually increase in stepsize, re#ecting the asymptotic behaviour of the problem, is used.
A similar tracing of the roots is used also for the frequency stepping. Due to the simplicity of
the collocation method the speed of the briefed eigenvalue solver is high and the number
of frequency points may well be of the order 103 which is su$cient for most applications.
The corresponding eigenmodes are obtained by solving equation (25) using inverse
iteration [21].

The mode matching, which in this context may be termed numerical to highlight the fact
that the eigenmodes are numerically determined, requires a number of integrals within
equations (52)}(56) involving products of Bessel functions, to be calculated. With the chosen
restriction to a circular central passage and inlet/outlet, the CPU time may be reduced using
analytical expressions [22] for some of the integrals. Thus,
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as well as
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the last integral being part of expression (56). What remains to be calculated is apparently
the integrals within equation (64). To cope with, this Romberg's method [21], i.e., the
trapezoidal rule with repeated Richardson extrapolation, is applied.

The whole numerical code is run within the framework of SID [23] which is an
engineering tool for design and analysis of #ow ducts based on the acoustic two-port
method and by which the interaction between the dissipative silencer and other silencers in,
for example, an automotive exhaust system, may be analyzed.

4.1. AN ELLIPTIC DISSIPATIVE SILENCER

In order to test in some way the formulation suggested above, the transmission loss of
a dissipative silencer with an elliptic cross-section has been calculated for a selection of
geometrical and material data representative of a typical automotive exhaust silencer and
readily available. Obviously, the given formulation may also be applied to other kinds of
bulk-reacting lined ducts such as, e.g. ventilation silencers, provided of course that the
fundamental assumptions stated above in section 2 holds.

Often the dissipative automotive silencer has an eccentric in/outlet, in most cases due to
lack of space beneath the car, but the question may arise as to whether this may have any
signi"cant in#uence upon the acoustic transmission properties or not. For an elliptic
cross-section with the origin located at (x

0
, y

0
), C
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is given by
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In the following example, b
min

/b
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"J0)51, which corresponds to an eccentricity of 0)7. To

normalize the results, the radius of the area equivalent circle, b
m
"Jb

min
b
max

, will be used.
The radius of the circular central passage is chosen to be 0)4193b

m
and the length of the

silencer is set to 4b
m
.

The porous material is described by the Delany and Bazley formulae [24],
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is the normalized #ow resistance. The
coe$cients are chosen from measurements upon basalt wool made by Cummings [25];
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Figure 2. The collocation grids for the two cross-sections analyzed.

Figure 3. The transmission loss per length of the "ve lowest eigenmodes with a concentric central passage as
shown in Figure 2(a). The dotted lines represents the cut-on values of the higher order modes in the corresponding
non-dissipative duct.
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To address the question posed above, a concentric as well as an eccentric in/outlet,
x
0
"0)3b

m
, is analyzed for U

n
"2)91. A moderate number of terms are chosen in the

expansions of the eigenmodes, M"8, i.e., 17 points are used for the collocation. The points
are chosen with slight decrease in polar angle step at the vicinity of the major axis; see
Figure 2 above. With these collocation grids, the accuracy of the obtained eigenvalues are to
at least 4 "gures. The eigenvalues corresponding to the 5 lowest modes of the lined duct
have been traced for the Helmholtz number, kb

m
from 0)2 to 3)3 using 2001 equidistant

points, and from 0)2 to 18)3 using 300 points and gradually increasing stepsize, for the
concentric and eccentric case respectively. The latter frequency range, corresponding to the
full range of validity for the Delany and Bazley model, greatly exceeds the range of practical
interest for commercial dissipative silencers but is included merely to illustrate the
possibility of analyzing higher Helmholtz numbers with given formulation. In Figures 3 and
4 the results are presented in terms of transmission loss per length b

m
,

¹¸
m
"20 DIm(kzWb

m
) D log

10
(e). It can be seen from these "gures, especially Figure 4, that the

eigenmodes asymptotically tend towards the same attenuation. This would imply that no
matter which eigenmode is most strongly excited in a practical installation of a dissipative
silencer, the attenuation will still be the same for the higher frequencies.



Figure 4. The transmission loss per length of the "ve lowest modes with an eccentric central passage, x
0
"0)3b

m
,

as shown in Figure 2(b).
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From the elements of the transfer matrix (60) the overall transmission loss of the
dissipative silencer may be calculated from
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1
/S

1
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22
D , (69)

which in order to enable comparison with earlier results will also be expressed in terms of
attenuation per length b

m
. The result calculated for the concentric as well as the eccentric

case using 51 points is shown in Figure 5. In the lined duct, all the eigenmodes analyzed
above are included in the mode matching; Q"5, whereas within the inlet and outlet
sections only the fundamental mode is considered; S"1. This choice is, of course, optional
but could be motivated by restricting the analysis to modes that are cut-on in the
corresponding non-attenuated case. The remaining higher order modes will typically also
be too attenuated to give any signi"cant e!ect in a silencer of the given length to width ratio.
The chosen number of modes also agrees with the optimum modal ratio suggested above.
As seen in Figure 5 the concentric con"guration gives the largest attenuation except at the
lowest frequencies where the predominating fundamental mode is almost plane and
consequently the cross-sectional shape is less important.

A technique often used in the analysis of dissipative silencers is to restrict the analysis to
only the fundamental modes, not only in the in/outlet but also in the lined duct. In Figures
6 and 7, the transmission loss obtained by this technique is compared to the more accurate
mode-matching results presented above but also with the transmission loss of the
fundamental mode itself. Apparently, from an engineering point of view, both the estimate
based on the attenuation per length of the fundamental mode as well as on the &&plane wave''
analysis gives acceptable results although as expected with a slight, typically 1}2 dB,
underestimate of the attenuation. It must be remembered though that this is not a general
result; with a less resistive porous material a di!erent result would be obtained. This is
illustrated in Figure 8 where the same eccentric con"guration has been analyzed, though
now with the #ow resistivity reduced to one-third; U

n
"0)97. The attenuation is now

underestimated by the fundamental mode solution by around 20% but perhaps more



Figure 5. Comparison between the transmission loss per length for a silencer with concentric, and eccentric,
x
0
"0)3b

m
, in/outlet.

Figure 6. The transmission loss per length for a concentric dissipative silencer estimated by; (a) attenuation of
fundamental mode per length, (b) mode matching by using solely fundamental modes, and (c) mode matching using
the "ve lowest modes of the lined duct.
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interesting is the slight overestimate of the attenuation at higher frequencies obtained by the
plane wave solution. Clearly, this e!ect is due to the onset of higher order modes which in
this less dissipative case is more pronounced.

Even though it is clear from the results above that e$cient optimization of the dissipative
silencer requires detailed modelling of the acoustic "eld, it is also apparent that not only the
plane wave but also the fundamental mode estimate may be of use in many practical
applications, especially as the parameter values chosen in these simulations are realistic
values obtained from measurements on commercial silencers.



Figure 7. The transmission loss per length of an eccentric dissipative silencer estimated by (a) attenuation of
fundamental mode per length, (b) mode matching using solely fundamental modes, and (c) mode matching using
the "ve lowest modes of the lined duct.

Figure 8. The transmission loss per length of an eccentric dissipative silencer with reduced #ow resistivity;
U

n
"0)97, estimated by (a) attenuation of fundamental mode per length, (b) mode matching using solely

fundamental modes, and (c) mode matching using the "ve lowest modes of the lined duct. The dotted line
represents the cut-on of the "rst higher order mode.
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5. CONCLUSIONS

The transfer matrix for a cylindrical dissipative silencer of arbitrary cross-section and
inlet/outlet has been derived for the case of negligible mean #ow. Unlike most earlier
contributions in literature, which are restricted to axisymmetric con"gurations, this analysis
is completely 3-D including also the outer end corrections, i.e., the near "eld in the
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inlet/outlet ducts. The derivation is based on a two-step procedure "rst using collocation to
determine the wavenumbers and eigenmodes of the lined duct section and, secondly,
coupling the partial "elds of the inlet, outlet and lined duct respectively by mode matching.
As an expansion in the polar eigenfunctions is used for the modal amplitudes, the
formulation gives optimum convergence for circular-like geometries and a residual con"ned
to the boundary conditions. The mode-matching scheme utilizes orthogonality, or
orthogonality-like, properties of the eigenmodes in both the inlet/outlet and the dissipative
duct. By this approach, the system to be solved for the transfer matrix elements can be
reduced to give a numerically smaller problem than that obtained in the more common
one-sided approach. By restricting the analysis to con"gurations with circular in/outlet and
a central passage, the numerical problem may be further reduced by performing collocation
solely at the outer boundary and solving some of the mode-matching integrals analytically.
In order to emphasize the fact that in this problem there are geometrical singularities, a brief
discussion about the closely related matter of relative convergence is given, although no
problems are likely to arise here.

As a practical application, a dissipative automotive silencer of elliptic cross-section has
been analyzed brie#y regarding the in/outlet location and rate of dissipation. In this
analysis, the full mode-matching formulation has been compared to both a fundamental
mode estimate as well as a &&plane wave''model. The results obtained for typical, but not too
low, values of #ow resistivity show reasonable agreement between the three di!erent
estimates, which consequently implies that for certain applications the most simple
fundamental mode estimate may well su$ce. On the other hand, for applications with lower
rates of dissipation, or higher demands for accurate optimization, a more detailed but still
numerically manageable analysis such as the suggested formulation is needed.

A major advantage with this technique compared to, for example conventional FEM, is
the close resemblance to the case of a circular cylindric expansion chamber. By this the
management and interpretation of the results are made much easier. Another useful feature
enabled by the numerical e$ciency is the possibility of starting the analysis at a known
con"guration and then tracking the results throughout the deformation into the actual case.
This provides the control needed in any numerical code to ensure reliable results. The
resolution and accuracy of the calculations in the practical example given, and the relative
ease with which they were performed, illustrates the engineering applicability of the method.
It may "nally also be noted that the derivation presented may be modi"ed quite easily to
include a uniform mean #ow in the central passage. In fact, the numerical technique
proposed for the dispersion relation is most suited for this as no eigenvalues, e.g.,
corresponding to possible hydrodynamic modes, will be lost.
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